How to save and load a TensorFlow / Keras Model with Custom Objects?
Author: Murat Karakaya
Date created: 30 May 2021
Last modified: 30 July 2021
Description: This tutorial will design and train a Keras model (miniature GPT3) with some custom objects (custom layers). We aim to learn how to save the trained model as a whole and load the saved model “TensorFlow SevedModel”.
Accessible on:
References:
Keras API reference / Callbacks API / ModelCheckpoint
Keras API reference / Models API / Model saving & serialization APIs
TensorFlow Core Tutorials: Save and load models
TensorFlow Core Tutorials: Saving custom objects
Saving Keras models with Custom Layers
Import Libraries
import numpy as np
import os
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from numpy import random
Check Versions
#@title Versions:
print("tf.version: ", tf.version.VERSION)
print("tf.keras.version: ", tf.keras.__version__)tf.version: 2.5.0
tf.keras.version: 2.5.0
What to save:
We can save either:
In this tutorial, I will focus on how to save the whole TensorFlow / Keras models with custom objects, e.g. custom layers, custom activation functions, custom loss functions.
I will not talk about the checkpoint process in this tutorial.
What do we save when we save the whole model?
We can save an entire model to a single artifact.
- The model’s architecture/config
- The model’s weight values (which were learned during training)
- The model’s compilation information (if compile() was called)
- The optimizer and its state, if any (this enables you to **resume training where you left)
- The optimizer and its state, if any (this enables you to resume training where you left)
Why do we save the whole TensorFlow & Keras Models?
Saving a fully functional model is very useful:
- You can load them in TensorFlow.js and then train and run them in web browsers, or
- You can convert them to run on mobile devices using TensorFlow Lite.
- Furthermore, you do not need the model’s “Python code” for inference.
- In addition, you can resume training where you left when saved the model.
What are the Save Formats in TensorFlow / Keras?
We have 2 models save formats:
- Either Tensorflow SavedModel or
- HDF5
Defaults:
- for TF 2.X is Tensorflow SavedModel
- for TF 1.X is HDF5
Which save format should I use?
I strongly suggest using the TensorFlow SavedModel format to save the entire model in a nut's shell.
Do not use the H5 format unless you have a good reason!
Why should I use the TensorFlow SavedModel format?
According to Tensorflow Guide (2.5 or higher);
The H5 format does not include two things that are saved by the TF SavedModel format:
- External losses & metrics added via model.add_loss() & model.add_metric() are not saved(unlike SavedModel).
- If you have such losses & metrics on your model and you want to resume training, you need to add these losses back yourself after loading the model. Note that this does not apply to losses/metrics created inside layers via self.add_loss() & self.add_metric(). As long as the layer gets loaded, these losses & metrics are kept, since they are part of the call method of the layer.
- The computation graph of custom objects such as custom layers is not included in the saved file. At loading time, Keras will need access to the Python classes/functions of these objects to reconstruct the model. See Custom objects.
The bottom line is that “the SavedModel format saves and loads custom layers without the original class definition”
If you want to learn more about this property, look for the save_traces parameter.
I will show below how to save models with custom objects when saved in the H5 format.
Which methods/functions to use to save the entire TensorFlow / Keras Models?
You can use:
- A Keras model’s
model.save()
method or - TensorFlow’s
tf.keras.models.save_model()
method
How to instruct the method to save in which format?
In both methods:
- if you only supply the name of the saved model, e.g.
model.save('my_model')
, then the saved model format will be TF savedmodel as default. - If you supply the H5 file extension, e.g.
model.save('my_model.h5')
, then the saved model format will be HDF5.
Create a Keras Model with custom objects ( custom layers)
First, prepare the random train dataset:
maxlen = 20
vocab_size = 100
number_of_categories = 20
rawdata = random.randint(vocab_size, size=(200, maxlen+1))
X = rawdata[:,:-1]
c = random.randint(number_of_categories, size=(200,1))
y = rawdata[:,1:]
Then, build a TensorFlow Data Pipeline:
train_ds= tf.data.Dataset.from_tensor_slices((X,c,y))
train_ds.element_spec(TensorSpec(shape=(20,), dtype=tf.int64, name=None),
TensorSpec(shape=(1,), dtype=tf.int64, name=None),
TensorSpec(shape=(20,), dtype=tf.int64, name=None))def re_struct(X,c,y):
return (X,c),y
train_ds = train_ds.map(re_struct)batch_size=64
train_ds=train_ds.batch(batch_size=batch_size,drop_remainder=True,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
train_ds=train_ds.cache()
train_ds = train_ds.prefetch(tf.data.experimental.AUTOTUNE)train_ds.element_spec((TensorSpec(shape=(64, 20), dtype=tf.int64, name=None),
TensorSpec(shape=(64, 1), dtype=tf.int64, name=None)),
TensorSpec(shape=(64, 20), dtype=tf.int64, name=None))for (X,c), y in train_ds.take(1):
print(X.shape, c.shape, y.shape)
print("\nFirst sample in the batch:")
print("\tX is: " ,X[0])
print("\tc is: ", c[0])
print("\ty is: ", y[0])(64, 20) (64, 1) (64, 20)
First sample in the batch:
X is: tf.Tensor([81 9 95 52 26 60 5 2 42 55 46 90 3 67 91 78 5 73 87 97], shape=(20,), dtype=int64)
c is: tf.Tensor([0], shape=(1,), dtype=int64)
y is: tf.Tensor([ 9 95 52 26 60 5 2 42 55 46 90 3 67 91 78 5 73 87 97 96], shape=(20,), dtype=int64)
Design a Miniature GPT3 Model with custom layers
You can visit the Controllable Text Generation tutorial series on Youtube ( Turkish / English) or Medium for more information.
def causal_attention_mask(batch_size, n_dest, n_src, dtype):
"""
Mask the upper half of the dot product matrix in self attention.
This prevents flow of information from future tokens to current token.
1's in the lower triangle, counting from the lower right corner.
"""
i = tf.range(n_dest)[:, None]
j = tf.range(n_src)
m = i >= j - n_src + n_dest
mask = tf.cast(m, dtype)
mask = tf.reshape(mask, [1, n_dest, n_src])
mult = tf.concat(
[tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)], 0
)
return tf.tile(mask, mult)
Pay Attention to that:
- We define the first custom layer
TransformerBlock()
class TransformerBlock(layers.Layer):
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1, **kwargs):
super(TransformerBlock, self).__init__()
self.embed_dim=embed_dim
self.num_heads = num_heads
self.ff_dim =ff_dim
self.att = layers.MultiHeadAttention(num_heads, embed_dim)
self.ffn = keras.Sequential(
[layers.Dense(ff_dim, activation="relu"), layers.Dense(embed_dim),]
)
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = layers.Dropout(rate)
self.dropout2 = layers.Dropout(rate)
def call(self, inputs):
input_shape = tf.shape(inputs)
batch_size = input_shape[0]
seq_len = input_shape[1]
causal_mask = causal_attention_mask(batch_size, seq_len, seq_len, tf.bool)
attention_output = self.att(inputs, inputs, attention_mask=causal_mask)
attention_output = self.dropout1(attention_output)
out1 = self.layernorm1(inputs + attention_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output)
return self.layernorm2(out1 + ffn_output)
- and the second custom layer
TokenPositionAndCategoricalEmbedding()
class TokenPositionAndCategoricalEmbedding(layers.Layer):
def __init__(self, maxlen, vocab_size, number_of_categories, embed_dim, **kwargs):
super(TokenPositionAndCategoricalEmbedding, self).__init__()
self.maxlen = maxlen
self.vocab_size = vocab_size
self.embed_dim = embed_dim
self.number_of_categories = number_of_categories
self.token_emb = layers.Embedding(input_dim=vocab_size, output_dim=embed_dim)
self.category_emb = layers.Embedding(input_dim=number_of_categories, output_dim=embed_dim)
self.pos_emb = layers.Embedding(input_dim=maxlen, output_dim=embed_dim)
def call(self, X, c):
maxlen = tf.shape(X)[-1]
positions = tf.range(start=0, limit=maxlen, delta=1)
positions = self.pos_emb(positions)
X = self.token_emb(X)
c= self.category_emb(c)
return X + positions + c
Now, we can use these custom layers to build the Keras model as follows:
embed_dim = 256 # Embedding size for each token
num_heads = 2 # Number of attention heads
feed_forward_dim = 256 # Hidden layer size in feed forward network inside transformer
def create_model():
inputs_tokens = layers.Input(shape=(maxlen,), dtype=tf.int32)
inputs_category = layers.Input(shape=(1,), dtype=tf.int32, name="inputs_category")
# the first custom layer for embedding
embedding_layer = TokenPositionAndCategoricalEmbedding(maxlen, vocab_size,
number_of_categories,
embed_dim)
x = embedding_layer(inputs_tokens,inputs_category)
# the second custom layer for GPT-kind-of transformer decoder block
transformer_block = TransformerBlock(embed_dim, num_heads, feed_forward_dim)
x = transformer_block(x)
outputs = layers.Dense(vocab_size)(x)
model = keras.Model(inputs=[inputs_tokens,inputs_category], outputs=[outputs, x])
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(
"adam", loss=[loss_fn, None],
) # No loss and optimization based on word embeddings from transformer block
return model
my_model=create_model()
Let’s see the model summary & plot:
my_model.summary()Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) [(None, 20)] 0
__________________________________________________________________________________________________
inputs_category (InputLayer) [(None, 1)] 0
__________________________________________________________________________________________________
token_position_and_categorical_ (None, 20, 256) 35840 input_1[0][0]
inputs_category[0][0]
__________________________________________________________________________________________________
transformer_block (TransformerB (None, 20, 256) 658688 token_position_and_categorical_em
__________________________________________________________________________________________________
dense_2 (Dense) (None, 20, 100) 25700 transformer_block[0][0]
==================================================================================================
Total params: 720,228
Trainable params: 720,228
Non-trainable params: 0
__________________________________________________________________________________________________tf.keras.utils.plot_model(my_model,show_shapes=True)
Train the Keras model with custom layers for 3 epochs:
my_model.fit(train_ds, verbose=1, epochs=3)Epoch 1/3
3/3 [==============================] - 2s 158ms/step - loss: 5.2088 - dense_2_loss: 5.2088
Epoch 2/3
3/3 [==============================] - 0s 159ms/step - loss: 4.6184 - dense_2_loss: 4.6184
Epoch 3/3
3/3 [==============================] - 0s 152ms/step - loss: 4.3528 - dense_2_loss: 4.3528
<tensorflow.python.keras.callbacks.History at 0x7f23ba6b8e90>
Let’s fix a test sample
test=train_ds.take(1)
Please note the prediction of the trained model to check if the trained model and saved model have the same weights:
my_model.predict(test)[0][0][0][0]-0.14445914
Saving custom objects with HDF5 format
According to the TensorFlow Core Tutorials: Saving custom objects with HDF5 format
To save custom objects to HDF5, you must do the following:
- Define a
get_config()
the method in your object, and optionally a from_config class method.
get_config(self)
returns a JSON-serializable dictionary of parameters needed to recreate the object.from_config(cls, config)
uses the returned config from get_config to create a new object. By default, this function will use the config as initialization kwargs (return cls(**config)).
- Pass the object to the custom_objects argument when loading the model. The argument must be a dictionary mapping the string class name to the Python class. E.g.
tf.keras.models.load_model(path, custom_objects={'CustomLayer': CustomLayer})
Note that: In the above custom layer, we have not implemented the method. Therefore, if we try to save the trained model with the custom layers, we will get the following error messages:
#tf.keras.models.save_model(my_model, './saved_models/my_h5_model.h5')
my_model.save('./saved_models/my_h5_model.h5')---------------------------------------------------------------------------
NotImplementedError Traceback (most recent call last)
<ipython-input-18-b9daa285f003> in <module>()
1 #tf.keras.models.save_model(my_model, './saved_models/my_h5_model.h5')
----> 2 my_model.save('./saved_models/my_h5_model.h5')
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py in save(self, filepath, overwrite, include_optimizer, save_format, signatures, options, save_traces)
2110 # pylint: enable=line-too-long
2111 save.save_model(self, filepath, overwrite, include_optimizer, save_format,
-> 2112 signatures, options, save_traces)
2113
2114 def save_weights(self,
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/saving/save.py in save_model(model, filepath, overwrite, include_optimizer, save_format, signatures, options, save_traces)
145 'or using `save_weights`.')
146 hdf5_format.save_model_to_hdf5(
--> 147 model, filepath, overwrite, include_optimizer)
148 else:
149 with generic_utils.SharedObjectSavingScope():
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/saving/hdf5_format.py in save_model_to_hdf5(model, filepath, overwrite, include_optimizer)
108
109 try:
--> 110 model_metadata = saving_utils.model_metadata(model, include_optimizer)
111 for k, v in model_metadata.items():
112 if isinstance(v, (dict, list, tuple)):
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/saving/saving_utils.py in model_metadata(model, include_optimizer, require_config)
151 except NotImplementedError as e:
152 if require_config:
--> 153 raise e
154
155 metadata = dict(
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/saving/saving_utils.py in model_metadata(model, include_optimizer, require_config)
148 model_config = {'class_name': model.__class__.__name__}
149 try:
--> 150 model_config['config'] = model.get_config()
151 except NotImplementedError as e:
152 if require_config:
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/functional.py in get_config(self)
647
648 def get_config(self):
--> 649 return copy.deepcopy(get_network_config(self))
650
651 @classmethod
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/functional.py in get_network_config(network, serialize_layer_fn)
1353 filtered_inbound_nodes.append(node_data)
1354
-> 1355 layer_config = serialize_layer_fn(layer)
1356 layer_config['name'] = layer.name
1357 layer_config['inbound_nodes'] = filtered_inbound_nodes
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/utils/generic_utils.py in serialize_keras_object(instance)
506 return serialize_keras_class_and_config(
507 name, {_LAYER_UNDEFINED_CONFIG_KEY: True})
--> 508 raise e
509 serialization_config = {}
510 for key, item in config.items():
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/utils/generic_utils.py in serialize_keras_object(instance)
501 name = get_registered_name(instance.__class__)
502 try:
--> 503 config = instance.get_config()
504 except NotImplementedError as e:
505 if _SKIP_FAILED_SERIALIZATION:
/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/base_layer.py in get_config(self)
719 raise NotImplementedError('Layer %s has arguments in `__init__` and '
720 'therefore must override `get_config`.' %
--> 721 self.__class__.__name__)
722 return config
723
NotImplementedError: Layer TokenPositionAndCategoricalEmbedding has arguments in `__init__` and therefore must override `get_config`.
I will show how to fix this error after seeing TensorFlow SavedModel example.
Saving custom objects with the TensorFlow SavedModel format
First, call one of two methods to save the trained model in the TensorFlow SavedModel format.
To do so, just give the fine name my_tf_model
without any file extension!
#tf.keras.models.save_model(my_model, './saved_models/my_tf_model')
my_model.save('./saved_models/my_tf_model')WARNING:absl:Found untraced functions such as embedding_layer_call_fn, embedding_layer_call_and_return_conditional_losses, embedding_1_layer_call_fn, embedding_1_layer_call_and_return_conditional_losses, embedding_2_layer_call_fn while saving (showing 5 of 70). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: ./saved_models/my_tf_model/assets
INFO:tensorflow:Assets written to: ./saved_models/my_tf_model/assets
As you observe, without any errors, we can save the model with custom objects.
Let’s load the saved model as follows:
my_tf_saved_model = tf.keras.models.load_model(
'./saved_models/my_tf_model')
my_tf_saved_model.summary()Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) [(None, 20)] 0
__________________________________________________________________________________________________
inputs_category (InputLayer) [(None, 1)] 0
__________________________________________________________________________________________________
token_position_and_categorical_ (None, 20, 256) 35840 input_1[0][0]
inputs_category[0][0]
__________________________________________________________________________________________________
transformer_block (TransformerB (None, 20, 256) 658688 token_position_and_categorical_em
__________________________________________________________________________________________________
dense_2 (Dense) (None, 20, 100) 25700 transformer_block[0][0]
==================================================================================================
Total params: 720,228
Trainable params: 720,228
Non-trainable params: 0
__________________________________________________________________________________________________
Run the predict()
method of the loaded model on the same test sample and compare the predicted value:
print("my_model.predict: ", my_model.predict(test)[0][0][0][0])
print("my_tf_saved_model.predict: ", my_tf_saved_model.predict(test)[0][0][0][0])my_model.predict: -0.14445914
my_tf_saved_model.predict: -0.14445914
That’s it: We successfully save and load the entire Keras model with custom layers in the TensorFlow SavedModel format.
Fix the error that occurred when saving custom objects with HDF5 format
As suggested by the official TensorFlow documents, we need to add get_config()
method to the custom objects!
Pay Attention to that:
- We re-define the custom layers
TransformerBlock()
&TokenPositionAndCategoricalEmbedding
by addingget_config()
which defines the inputs to the custom layer as below.
class TransformerBlock(layers.Layer):
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1, **kwargs):
super(TransformerBlock, self).__init__()
self.embed_dim=embed_dim
self.num_heads = num_heads
self.ff_dim =ff_dim
self.att = layers.MultiHeadAttention(num_heads, embed_dim)
self.ffn = keras.Sequential(
[layers.Dense(ff_dim, activation="relu"), layers.Dense(embed_dim),]
)
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = layers.Dropout(rate)
self.dropout2 = layers.Dropout(rate)
def call(self, inputs):
input_shape = tf.shape(inputs)
batch_size = input_shape[0]
seq_len = input_shape[1]
causal_mask = causal_attention_mask(batch_size, seq_len, seq_len, tf.bool)
attention_output = self.att(inputs, inputs, attention_mask=causal_mask)
attention_output = self.dropout1(attention_output)
out1 = self.layernorm1(inputs + attention_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output)
return self.layernorm2(out1 + ffn_output)
def get_config(self):
config = super(TransformerBlock, self).get_config()
config.update({
'att': self.att,
'ffn': self.ffn,
'layernorm1': self.layernorm1,
'layernorm2':self.layernorm2,
'dropout1':self.dropout1,
'dropout2':self.dropout2,
'embed_dim': self.embed_dim,
'num_heads':self.num_heads,
'ff_dim':self.ff_dim
})
return configclass TokenPositionAndCategoricalEmbedding(layers.Layer):
def __init__(self, maxlen, vocab_size, number_of_categories, embed_dim, **kwargs):
super(TokenPositionAndCategoricalEmbedding, self).__init__()
self.maxlen = maxlen
self.vocab_size = vocab_size
self.embed_dim = embed_dim
self.number_of_categories = number_of_categories
self.token_emb = layers.Embedding(input_dim=vocab_size, output_dim=embed_dim)
self.category_emb = layers.Embedding(input_dim=number_of_categories, output_dim=embed_dim)
self.pos_emb = layers.Embedding(input_dim=maxlen, output_dim=embed_dim)
def call(self, X, c):
maxlen = tf.shape(X)[-1]
positions = tf.range(start=0, limit=maxlen, delta=1)
positions = self.pos_emb(positions)
X = self.token_emb(X)
c= self.category_emb(c)
return X + positions + c
def get_config(self):
config = super(TokenPositionAndCategoricalEmbedding, self).get_config()
config.update({
'token_emb': self.token_emb,
'category_emb':self.category_emb,
'pos_emb': self.pos_emb,
'maxlen': self.maxlen,
'vocab_size': self.vocab_size,
'number_of_categories':self.number_of_categories,
'embed_dim': self.embed_dim
})
return config
Re-build the model after these updates:
embed_dim = 256 # Embedding size for each token
num_heads = 2 # Number of attention heads
feed_forward_dim = 256 # Hidden layer size in feed forward network inside transformer
def create_model():
inputs_tokens = layers.Input(shape=(maxlen,), dtype=tf.int32)
inputs_category = layers.Input(shape=(1,), dtype=tf.int32, name="inputs_category")
# the first custom layer for embedding
embedding_layer = TokenPositionAndCategoricalEmbedding(maxlen, vocab_size,
number_of_categories,
embed_dim)
x = embedding_layer(inputs_tokens,inputs_category)
# the second custom layer for GPT-kind-of transformer decoder block
transformer_block = TransformerBlock(embed_dim, num_heads, feed_forward_dim)
x = transformer_block(x)
outputs = layers.Dense(vocab_size)(x)
model = keras.Model(inputs=[inputs_tokens,inputs_category], outputs=[outputs, x])
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(
"adam", loss=[loss_fn, None],
) # No loss and optimization based on word embeddings from transformer block
return model
my_model=create_model()
Train the new model:
my_model.fit(train_ds, verbose=1, epochs=3)Epoch 1/3
3/3 [==============================] - 2s 157ms/step - loss: 5.1915 - dense_5_loss: 5.1915
Epoch 2/3
3/3 [==============================] - 0s 151ms/step - loss: 4.6162 - dense_5_loss: 4.6162
Epoch 3/3
3/3 [==============================] - 0s 148ms/step - loss: 4.3364 - dense_5_loss: 4.3364
<tensorflow.python.keras.callbacks.History at 0x7f23b86e7a10>
Save the trained model in the H5 format
#tf.keras.models.save_model(my_model, './saved_models/my_h5_model.h5')
my_model.save('./saved_models/my_h5_saved_model.h5')
Notice that: THis time, we did not receive any error messages!
Now, load the saved model in the H5 format by providing custom object names as below:
my_h5_saved_model = tf.keras.models.load_model(
'./saved_models/my_h5_saved_model.h5',
custom_objects={'TransformerBlock': TransformerBlock,
'TokenPositionAndCategoricalEmbedding':TokenPositionAndCategoricalEmbedding})
my_h5_saved_model.summary()Model: "model_1"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_2 (InputLayer) [(None, 20)] 0
__________________________________________________________________________________________________
inputs_category (InputLayer) [(None, 1)] 0
__________________________________________________________________________________________________
token_position_and_categorical_ (None, 20, 256) 35840 input_2[0][0]
inputs_category[0][0]
__________________________________________________________________________________________________
transformer_block_2 (Transforme (None, 20, 256) 658688 token_position_and_categorical_em
__________________________________________________________________________________________________
dense_5 (Dense) (None, 20, 100) 25700 transformer_block_2[0][0]
==================================================================================================
Total params: 720,228
Trainable params: 720,228
Non-trainable params: 0
__________________________________________________________________________________________________
Run the predict()
method of the loaded model on the same test sample and compare the predicted value:
print("my_model.predict: ", my_model.predict(test)[0][0][0][0])
print("my_h5_saved_model.predict: ", my_h5_saved_model.predict(test)[0][0][0][0])my_model.predict: -1.1457596
my_h5_saved_model.predict: -1.1457596
Yes, we successfully save and load the entire Keras model with custom layers in the H5 format as well.
Note that: You can also resume training the loaded models. Please try it by yourself :)
Conclusions:
- We reviewed the related concepts to save and load a Keras model with custom objects in TensorFlow.
- We have implemented custom objects (layers) in a Keras model.
- We saved the entire trained model with 2 different formats:
TensorFlow SavedModel
&HDF5
. - We loaded the saved model successfully and use it for prediction.
- If you do not have a specific reason, I suggest you use the TensorFlow SavedModel format especially when the model has some custom objects.
You can learn more about TensorFlow & Keras layers in this and that playlists on Murat Karakaya Akademi YouTube channel.
Comments or Questions?
Please share your Comments or Questions.
Thank you in advance.
Do not forget to check out the next parts!
Take care!